If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20x^2-18x-5=0
a = 20; b = -18; c = -5;
Δ = b2-4ac
Δ = -182-4·20·(-5)
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{181}}{2*20}=\frac{18-2\sqrt{181}}{40} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{181}}{2*20}=\frac{18+2\sqrt{181}}{40} $
| 20/35=x | | m^2=-16 | | 59=7z+3 | | 6k-2=22 | | 7z-2z=4-13 | | (3x-1)(-2x+3)=0 | | x4+3x2−4=0 | | 1,3n=5 | | x-(0.423x=1000) | | (5x+6)(2x+3)=10x^2+2x-2 | | (5x+6)(2x+3)=10x^+2x-2 | | x-(0.42.3x=1000) | | 5x–3(2x+1)=21+x | | (5x+6)(2x+3)=10x+2x-2 | | x-(0.323x)=1000 | | x-(0.323x=1000) | | 5x=8x+120 | | 65x-70=83 | | 12=18x/12 | | -3x+1=2(5x-2) | | 4n/3+1=9 | | 3k/4+2=5 | | m/5+3=4 | | 3a/2=a+2 | | 2a/5+5=7 | | 10^x=1250 | | y5-2=7 | | (3x/4)-8=19 | | 3x/4)-8=19 | | 1,50,000=2.5x-x | | 2w/3-5=4 | | 5a/3-2=3 |